Understanding interactions between toxic waste and fungi: breaking down toxic materials and restore ecosystems
Abstract views: 480 / PDF downloads: 238
Keywords:
Role of Fungi for earth, Breaking down toxic materials, Restore ecosystems, Toxic waste, Mushroom, MycoremediationAbstract
Significant pressure has been applied to the secondary pollution or over costing to deal with pollution over the past decade. Several studies have tried to explore cost-effective methods to deal with earth’s pollution. There are several species in the nature which can play vital role to fight with pollution naturally without any secondary pollution. Mycoremediation is getting attention these days, because this is process of harnessing fungi’s ability to break down things for a valuable effect. In industry, bioenergy, biomaterials, biochemicals, and bio-fertilizer are converted from bio-waste and agricultural crop residues with the help of such fungal products. This is the reason fungi is getting more attention in every field. The prime job of most fungi is to sustain the natural world. Along with bacteria, fungi are important for the earth. This study reviews the benefits of fungi in different sectors. It also highlights the role of fungi to fight with toxic materials. This study also recommends further research towards the exploitation of potential of fungi as bioremediation tool.
References
Ajith, T. A., & Janardhanan, K. K. (2007). Indian Medicinal Mushrooms as a Source of Antioxidant and Antitumor Agents. Journal of Clinical Biochemistry and Nutrition, 40(3), 157-162. doi:10.3164/jcbn.40.157
Akhtar, N., & Mannan, M. A.-u. (2020). Mycoremediation: Expunging environmental pollutants. Biotechnology Reports, 26, e00452. doi:https://doi.org/10.1016/j.btre.2020.e00452
Akram, M. (2010). Adsorptive removal of phosphate by the bimetallic hydroxide nanocomposites embedded in pomegranate peel. Journal of Environmental Sciences.
Akram, M., Gao, B., Pan, J., Khan, R., Inam, M. A., Xu, X., . . . Yue, Q. (2022). Enhanced removal of phosphate using pomegranate peel-modified nickel‑lanthanum hydroxide. Science of the Total Environment, 809, 151181. doi:https://doi.org/10.1016/j.scitotenv.2021.151181
Alemu, D., Tafesse, M., & Mondal, A. K. (2022). Mycelium-Based Composite: The Future Sustainable Biomaterial. International Journal of Biomaterials, 2022, 8401528. doi:10.1155/2022/8401528
Bhuvaneswari, M., Subashini, R., Winny Fred Crossia, J., & Vijayalakshmi, S. (2020). Chapter 18 - Mycoremediation of industrial dyes by laccases. In J. Singh & P. Gehlot (Eds.), New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 235-243): Elsevier.
Buil, P. A., Renison, D., & Becerra, A. G. (2021). Soil infectivity and arbuscular mycorrhizal fungi communities in four urban green sites in central Argentina. Urban Forestry & Urban Greening, 64, 127285. doi:https://doi.org/10.1016/j.ufug.2021.127285
da Luz, J. M. R., Paes, S. A., Nunes, M. D., da Silva, M. d. C. S., & Kasuya, M. C. M. (2013). Degradation of Oxo-Biodegradable Plastic by Pleurotus ostreatus. PloS one, 8(8), e69386. doi:10.1371/journal.pone.0069386
Dai, W., Chen, X., Wang, X., Xu, Z., Gao, X., Jiang, C., . . . Han, G. J. F. i. m. (2018). The algicidal fungus Trametes versicolor F21a eliminating blue algae via genes encoding degradation enzymes and metabolic pathways revealed by transcriptomic analysis. 9, 826.
Dan, H., Li, N., Xu, X., Gao, Y., Huang, Y., Akram, M., . . . Yue, Q. (2020). Mechanism of sonication time on structure and adsorption properties of 3D peanut shell/graphene oxide aerogel. Science of the Total Environment, 739, 139983. doi:https://doi.org/10.1016/j.scitotenv.2020.139983
Deshmukh, R., Khardenavis, A. A., & Purohit, H. J. (2016). Diverse Metabolic Capacities of Fungi for Bioremediation. Indian J Microbiol, 56(3), 247-264. doi:10.1007/s12088-016-0584-6
Falandysz, J., & Treu, R. (2017). Fungi and environmental pollution. Journal of Environmental Science and Health, Part B, 52(3), 147-147. doi:10.1080/03601234.2017.1261535
Ferrari, C., Santunione, G., Libbra, A., Muscio, A., Sgarbi, E., Siligardi, C., & Barozzi, G. S. (2015). Review on the influence of biological deterioration on the surface properties of building materials: Organisms, materials, and methods. International Journal of Design & Nature and Ecodynamics, 10, 21-39. doi:10.2495/DNE-V10-N1-21-39
Gadd, G. M. (1994). Interactions of Fungi with Toxic Metals. In K. A. Powell, A. Renwick, & J. F. Peberdy (Eds.), The Genus Aspergillus: From Taxonomy and Genetics to Industrial Application (pp. 361-374). Boston, MA: Springer US.
Gameiro, P. H. (2013). Antimutagenic Effect of Aqueous Extract from Agaricus brasiliensis on Culture of Human Lymphocytes. 16(2), 180-183. doi:10.1089/jmf.2012.0068
Gao, Y., Dai, X., Chen, G., Ye, J., & Zhou, S. (2003). A Randomized, Placebo-Controlled, Multicenter Study of Ganoderma lucidum (W.Curt.:Fr.) Lloyd (Aphyllophoromycetideae) Polysaccharides (Ganopoly®) in Patients with Advanced Lung Cancer. 5(4), 14. doi:10.1615/InterJMedicMush.v5.i4.40
Heisel, F., Schlesier, K., Lee, J., Rippmann, M., Saeidi, N., Javadian, A., . . . Block, P. (2017). Design of a load-bearing mycelium structure through informed structural engineering. Paper presented at the World Congress on Sustainable Technologies (WCST-2017),(ss. 45-49).
Inam, M. A., Khan, R., Akram, M., Khan, S., Park, D. R., & Yeom, I. T. (2019). Interaction of Arsenic Species with Organic Ligands: Competitive Removal from Water by Coagulation-Flocculation-Sedimentation (C/F/S). 24(8), 1619.
Inam, M. A., Khan, R., Akram, M., Khan, S., & Yeom, I. T. (2019). Effect of Water Chemistry on Antimony Removal by Chemical Coagulation: Implications of ζ-Potential and Size of Precipitates. 20(12), 2945.
Inam, M. A., Khan, R., Yeom, I. T., Buller, A. S., Akram, M., & Inam, M. W. (2021). Optimization of Antimony Removal by Coagulation-Flocculation-Sedimentation Process Using Response Surface Methodology. 9(1), 117.
Jones, M., Mautner, A., Luenco, S., Bismarck, A., & John, S. (2020). Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Materials & Design, 187, 108397. doi:https://doi.org/10.1016/j.matdes.2019.108397
Joshi, K., Meher, M. K., & Poluri, K. M. (2020). Fabrication and Characterization of Bioblocks from Agricultural Waste Using Fungal Mycelium for Renewable and Sustainable Applications. ACS Applied Bio Materials, 3(4), 1884-1892. doi:10.1021/acsabm.9b01047
Kang, M. Y., Rico, C. W., & Lee, S. C. (2012). In vitro antioxidative and antimutagenic activities of oak mushroom (Lentinus edodes) and king oyster mushroom (Pleurotus eryngii) byproducts. Food Science and Biotechnology, 21(1), 167-173. doi:10.1007/s10068-012-0021-5
Kües, U. (2015). Fungal enzymes for environmental management. Current Opinion in Biotechnology, 33, 268-278. doi:https://doi.org/10.1016/j.copbio.2015.03.006
Kulshreshtha, S., Mathur, N., & Bhatnagar, P. (2014). Mushroom as a product and their role in mycoremediation. AMB Express, 4, 29. doi:10.1186/s13568-014-0029-8
Kulshreshtha, S., Mathur, N., Bhatnagar, P., & Jain, B. J. J. o. e. b. (2010). Bioremediation of industrial waste through mushroom cultivation. 31(4), 441-444.
Kulshreshtha, S., Mathur, N., Bhatnagar, P., & Kulshreshtha, S. (2013). Cultivation of Pleurotus citrinopileatus on handmade paper and cardboard industrial wastes. Industrial Crops and Products, 41, 340-346. doi:https://doi.org/10.1016/j.indcrop.2012.04.053
Lange, L. (2010). The importance of fungi for a more sustainable future on our planet. Fungal Biology Reviews, 24(3), 90-92. doi:https://doi.org/10.1016/j.fbr.2010.12.002
Liu, Y., Li, X., & Kou, Y. (2020). Ectomycorrhizal Fungi: Participation in Nutrient Turnover and Community Assembly Pattern in Forest Ecosystems. Forests, 11, 453. doi:10.3390/f11040453
Maehara, Y., Tsujitani, S., Saeki, H., Oki, E., Yoshinaga, K., Emi, Y., . . . Baba, H. (2012). Biological mechanism and clinical effect of protein-bound polysaccharide K (KRESTIN®): review of development and future perspectives. Surgery Today, 42(1), 8-28. doi:10.1007/s00595-011-0075-7
Maximino C. Ongpeng, J., Inciong, E., Sendo, V., Soliman, C., & Siggaoat, A. (2020). Using Waste in Producing Bio-Composite Mycelium Bricks. 10(15), 5303.
Meyer, V., Basenko, E. Y., Benz, J. P., Braus, G. H., Caddick, M. X., Csukai, M., . . . Wösten, H. A. B. (2020). Growing a circular economy with fungal biotechnology: a white paper. Fungal Biology and Biotechnology, 7(1), 5. doi:10.1186/s40694-020-00095-z
Nairn, C. (2021). Mycoremediation brings the fungi to waste disposal and ecosystem restoration. In: Mongabay.
Noman, E., Talip, B. A., Al-Gheethi, A., Mohamed, R., & Nagao, H. (2020). Decolourisation of dyes in greywater by mycoremediation and mycosorption process of fungi from peatland; primary study. Materials Today: Proceedings, 31, 23-30. doi:https://doi.org/10.1016/j.matpr.2020.01.078
Nutrient Cycling by Saprotrophic Fungi in Terrestrial Habitats. (2007). In C. P. Kubicek & I. S. Druzhinina (Eds.), Environmental and Microbial Relationships (pp. 287-300). Berlin, Heidelberg: Springer Berlin Heidelberg.
Ohmiya, K., Sakka, K., Kimura, T., & Morimot, K. (2003). Application of microbial genes to recalcitrant biomass utilization and environmental conservation. Journal of Bioscience and Bioengineering, 95(6), 549-561. doi:https://doi.org/10.1016/S1389-1723(03)80161-5
Olusola, S., & Anslem, E. (2010). Bioremediation of a crude oil polluted soil with Pleurotus pulmonarius and Glomus mosseae using Amaranthus hybridus as a test plant. J Bioremed Biodegr 1: 113. In: OMICS Publishing Group J Bioremed Biodegrad ISSN.
Pérez, J. C. (2021). Fungi of the human gut microbiota: Roles and significance. Int J Med Microbiol, 311(3), 151490. doi:10.1016/j.ijmm.2021.151490
Rather, L. J., Shahid ul, I., & Mohammad, F. (2015). Acacia nilotica (L.): A review of its traditional uses, phytochemistry, and pharmacology. Sustainable Chemistry and Pharmacy, 2, 12-30. doi:https://doi.org/10.1016/j.scp.2015.08.002
Read, D. J., & Perez-Moreno, J. (2003). Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? , 157(3), 475-492. doi:https://doi.org/10.1046/j.1469-8137.2003.00704.x
Scientists Find Fungus with an Appetite for Plastic in Rubbish Tip. (2017). Retrieved from China: https://english.cas.cn/newsroom/archive/research_archive/rp2017/201703/t20170330_175543.shtml
skander SB, A. E.-A. S., El-Sayaad H, Saleh HM. (2012). Cementation of bioproducts generated from biodegradation of radioactive cellulosic-based waste simulates by mushroom. ISRN Chemical Engineering. doi:doi:10.5402/2012/329676
Tortella, G. R., Diez, M. C., & Duran, N. (2005). Fungal diversity and use in decomposition of environmental pollutants. Crit Rev Microbiol, 31(4), 197-212. doi:10.1080/10408410500304066
Travaglini, S., Dharan, C., & Ross, P. (2014). Mycology matrix sandwich composites flexural characterization. Paper presented at the Proceedings of the American Society for Composites.
Vašinková, M., Dlabaja, M., & Kučová, K. (2021). Bioaccumulation of toxic metals by fungi of the genus Aspergillus isolated from the contaminated area of Ostramo Lagoons. IOP Conference Series: Earth and Environmental Science, 900(1), 012048. doi:10.1088/1755-1315/900/1/012048
Verbruggen, E., Struyf, E., & Vicca, S. (2021). Can arbuscular mycorrhizal fungi speed up carbon sequestration by enhanced weathering? , 3(5), 445-453. doi:https://doi.org/10.1002/ppp3.10179
Viana, C. (2021). Benefits of Fungi for the Environment and Humans. In: Chloridefree.
Wang, J., Liu, G., Zhang, C., Wang, G., Fang, L., & Cui, Y. (2019). Higher temporal turnover of soil fungi than bacteria during long-term secondary succession in a semiarid abandoned farmland. Soil and Tillage Research, 194, 104305. doi:https://doi.org/10.1016/j.still.2019.104305
Zhao, M., Sun, B., Wu, L., Wang, F., Wen, C., Wang, M., Yang, Y. (2019). Dissimilar responses of fungal and bacterial communities to soil transplantation simulating abrupt climate changes. Mol Ecol, 28(7), 1842-1856. doi:10.1111/mec.15053
Zimmermann, W. (2021). Degradation of Plastics by Fungi. In Ó. Zaragoza & A. Casadevall (Eds.), Encyclopedia of Mycology (pp. 650-661). Oxford: Elsevier.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Recycling Economy & Sustainability Policy
This work is licensed under a Creative Commons Attribution 4.0 International License.